Molecular mechanism underlying desensitization of the proton-activated chloride channel PAC

Author:

Osei-Owusu James1ORCID,Ruan Zheng2ORCID,Mihaljević Ljubica1,Matasic Daniel S3,Chen Kevin Hong1,Lü Wei2ORCID,Qiu Zhaozhu14ORCID

Affiliation:

1. Department of Physiology, Johns Hopkins University School of Medicine

2. Department of Structural Biology, Van Andel Institute

3. Department of Medicine, Johns Hopkins University School of Medicine

4. Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine

Abstract

Desensitization is a common property of membrane receptors, including ion channels. The newly identified proton-activated chloride (PAC) channel plays an important role in regulating the pH and size of organelles in the endocytic pathway, and is also involved in acid-induced cell death. However, how the PAC channel desensitizes is largely unknown. Here, we show by patch-clamp electrophysiological studies that PAC (also known as TMEM206/ASOR) undergoes pH-dependent desensitization upon prolonged acid exposure. Through structure-guided and comprehensive mutagenesis, we identified several residues critical for PAC desensitization, including histidine (H) 98, glutamic acid (E) 94, and aspartic acid (D) 91 at the extracellular extension of the transmembrane helix 1 (TM1), as well as E107, D109, and E250 at the extracellular domain (ECD)–transmembrane domain (TMD) interface. Structural analysis and molecular dynamic simulations revealed extensive interactions between residues at the TM1 extension and those at the ECD–TMD interface. These interactions likely facilitate PAC desensitization by stabilizing the desensitized conformation of TM1, which undergoes a characteristic rotational movement from the resting and activated states to the desensitized state. Our studies establish a new paradigm of channel desensitization in this ubiquitously expressed ion channel and pave the way for future investigation of its relevance in cellular physiology and disease.

Funder

National Institutes of Health

American Heart Association

National Institute of General Medical Sciences

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference39 articles.

1. GROMACS:high performance molecular simulations through multi-level parallelism from laptops to supercomputers;Abraham,2015

2. A novel voltage-dependent chloride current activated by extracellular acidic ph in cultured rat sertoli cells;Auzanneau;The Journal of Biological Chemistry,2003

3. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a na(+)-selective channel;Baconguis;Cell,2014

4. Molecular dynamics with coupling to an external bath;Berendsen;J Chem Phys,1984

5. Channels: properties and mechanisms of regulation;Capurro;Biochimica et Biophysica Acta,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3