Plasmodium-specific atypical memory B cells are short-lived activated B cells

Author:

Pérez-Mazliah Damián1ORCID,Gardner Peter J2ORCID,Schweighoffer Edina1,McLaughlin Sarah1,Hosking Caroline1,Tumwine Irene1,Davis Randall S345ORCID,Potocnik Alexandre J6ORCID,Tybulewicz Victor LJ1ORCID,Langhorne Jean1ORCID

Affiliation:

1. The Francis Crick Institute, London, United Kingdom

2. MRC National Institute for Medical Research, London, United Kingdom

3. Department of Medicine, University of Alabama at Birmingham, Birmingham, United States

4. Department of Microbiology, University of Alabama at Birmingham, Birmingham, United States

5. Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, United States

6. School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom

Abstract

A subset of atypical memory B cells accumulates in malaria and several infections, autoimmune disorders and aging in both humans and mice. It has been suggested these cells are exhausted long-lived memory B cells, and their accumulation may contribute to poor acquisition of long-lasting immunity to certain chronic infections, such as malaria and HIV. Here, we generated an immunoglobulin heavy chain knock-in mouse with a BCR that recognizes MSP1 of the rodent malaria parasite, Plasmodium chabaudi. In combination with a mosquito-initiated P. chabaudi infection, we show that Plasmodium-specific atypical memory B cells are short-lived and disappear upon natural resolution of chronic infection. These cells show features of activation, proliferation, DNA replication, and plasmablasts. Our data demonstrate that Plasmodium-specific atypical memory B cells are not a subset of long-lived memory B cells, but rather short-lived activated cells, and part of a physiologic ongoing B-cell response.

Funder

National Institutes of Health

Medical Research Council

Cancer Research UK

Wellcome Trust

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3