Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an artifact of injection

Author:

Raghunandan Aditya1ORCID,Ladron-de-Guevara Antonio2ORCID,Tithof Jeffrey13ORCID,Mestre Humberto2ORCID,Du Ting2,Nedergaard Maiken24,Thomas John H1ORCID,Kelley Douglas H1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Rochester, Rochester, United States

2. Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States

3. Department of Mechanical Engineering, University of Minnesota, Minneapolis, United States

4. Center for Translational Neuromedicine, University of Copenhagen, Rochester, United States

Abstract

Cerebrospinal fluid (CSF) flowing through periarterial spaces is integral to the brain’s mechanism for clearing metabolic waste products. Experiments that track tracer particles injected into the cisterna magna (CM) of mouse brains have shown evidence of pulsatile CSF flow in perivascular spaces surrounding pial arteries, with a bulk flow in the same direction as blood flow. However, the driving mechanism remains elusive. Several studies have suggested that the bulk flow might be an artifact, driven by the injection itself. Here, we address this hypothesis with new in vivo experiments where tracer particles are injected into the CM using a dual-syringe system, with simultaneous injection and withdrawal of equal amounts of fluid. This method produces no net increase in CSF volume and no significant increase in intracranial pressure. Yet, particle-tracking reveals flows that are consistent in all respects with the flows observed in earlier experiments with single-syringe injection.

Funder

National Institutes of Health

Army Research Office

Burroughs Wellcome Fund

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3