Liquid-crystal organization of liver tissue

Author:

Morales-Navarrete Hernán1ORCID,Nonaka Hidenori1,Scholich André2ORCID,Segovia-Miranda Fabián1ORCID,de Back Walter34ORCID,Meyer Kirstin1,Bogorad Roman L5,Koteliansky Victor67,Brusch Lutz4ORCID,Kalaidzidis Yannis1,Jülicher Frank28ORCID,Friedrich Benjamin M89ORCID,Zerial Marino18ORCID

Affiliation:

1. Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

2. Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

3. Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany

4. Centre for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany

5. David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States

6. Skolkovo Institute of Science and Technology, Skolkovo, Russia

7. Department of Chemistry, MV Lomonosov Moscow State University, Moscow, Russia

8. Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany

9. Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany

Abstract

Functional tissue architecture originates by self-assembly of distinct cell types, following tissue-specific rules of cell-cell interactions. In the liver, a structural model of the lobule was pioneered by Elias in 1949. This model, however, is in contrast with the apparent random 3D arrangement of hepatocytes. Since then, no significant progress has been made to derive the organizing principles of liver tissue. To solve this outstanding problem, we computationally reconstructed 3D tissue geometry from microscopy images of mouse liver tissue and analyzed it applying soft-condensed-matter-physics concepts. Surprisingly, analysis of the spatial organization of cell polarity revealed that hepatocytes are not randomly oriented but follow a long-range liquid-crystal order. This does not depend exclusively on hepatocytes receiving instructive signals by endothelial cells, since silencing Integrin-β1 disrupted both liquid-crystal order and organization of the sinusoidal network. Our results suggest that bi-directional communication between hepatocytes and sinusoids underlies the self-organization of liver tissue.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Max-Planck-Gesellschaft

H2020 European Research Council

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3