NetPyNE, a tool for data-driven multiscale modeling of brain circuits

Author:

Dura-Bernal Salvador1ORCID,Suter Benjamin A2ORCID,Gleeson Padraig3ORCID,Cantarelli Matteo4ORCID,Quintana Adrian5,Rodriguez Facundo14,Kedziora David J6ORCID,Chadderdon George L1,Kerr Cliff C6,Neymotin Samuel A17ORCID,McDougal Robert A89ORCID,Hines Michael8,Shepherd Gordon MG2ORCID,Lytton William W110ORCID

Affiliation:

1. Department of Physiology & Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States

2. Department of Physiology, Northwestern University, Chicago, United States

3. Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom

4. MetaCell LLC, Boston, United States

5. EyeSeeTea Ltd, Cheltenham, United Kingdom

6. Complex Systems Group, School of Physics, University of Sydney, Sydney, Australia

7. Nathan Kline Institute for Psychiatric Research, Orangeburg, United States

8. Department of Neuroscience and School of Medicine, Yale University, New Haven, United States

9. Center for Medical Informatics, Yale University, New Haven, United States

10. Department of Neurology, Kings County Hospital, Brooklyn, United States

Abstract

Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis – connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.

Funder

National Institute of Biomedical Imaging and Bioengineering

New York State Department of Health

Wellcome Trust

National Institute on Deafness and Other Communication Disorders

National Institute of Mental Health

Australian Research Council

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3