Visualizing endogenous opioid receptors in living neurons using ligand-directed chemistry

Author:

Arttamangkul Seksiri1ORCID,Plazek Andrew2,Platt Emily J3,Jin Haihong2,Murray Thomas F4,Birdsong William T1,Rice Kenner C5,Farrens David L3,Williams John T1ORCID

Affiliation:

1. The Vollum Institute, Oregon Health & Science University, Portland, United States

2. Medicinal Chemistry Core, Oregon Health & Science University, Portland, United States

3. Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, United States

4. Department of Pharmacology, School of Medicine, Creighton University, Omaha, United States

5. Drug Design and Synthesis Section, Intramural Research Program, NIDA and NIAAA, Bethesda, United States

Abstract

Identifying neurons that have functional opioid receptors is fundamental for the understanding of the cellular, synaptic and systems actions of opioids. Current techniques are limited to post hoc analyses of fixed tissues. Here we developed a fluorescent probe, naltrexamine-acylimidazole (NAI), to label opioid receptors based on a chemical approach termed ‘traceless affinity labeling’. In this approach, a high affinity antagonist naltrexamine is used as the guide molecule for a transferring reaction of acylimidazole at the receptor. This reaction generates a fluorescent dye covalently linked to the receptor while naltrexamine is liberated and leaves the binding site. The labeling induced by this reagent allowed visualization of opioid-sensitive neurons in rat and mouse brains without loss of function of the fluorescently labeled receptors. The ability to locate endogenous receptors in living tissues will aid considerably in establishing the distribution and physiological role of opioid receptors in the CNS of wild type animals.

Funder

National Institute on Drug Abuse

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3