Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a

Author:

Knott Gavin J1ORCID,Cress Brady F1,Liu Jun-Jie1,Thornton Brittney W1,Lew Rachel J2,Al-Shayeb Basem3,Rosenberg Daniel J45ORCID,Hammel Michal4,Adler Benjamin A67,Lobba Marco J8,Xu Michael1,Arkin Adam P79ORCID,Fellmann Christof210ORCID,Doudna Jennifer A124811ORCID

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States

2. Gladstone Institutes, San Francisco, United States

3. Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States

4. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States

5. Graduate Group in Biophysics, University of California, Berkeley, Berkeley, United States

6. UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, United States

7. Department of Bioengineering, University of California, Berkeley, Berkeley, United States

8. Department of Chemistry, University of California, Berkeley, Berkeley, United States

9. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, United States

10. Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States

11. Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States

Abstract

CRISPR-Cas systems provide bacteria and archaea with programmable immunity against mobile genetic elements. Evolutionary pressure by CRISPR-Cas has driven bacteriophage to evolve small protein inhibitors, anti-CRISPRs (Acrs), that block Cas enzyme function by wide-ranging mechanisms. We show here that the inhibitor AcrVA4 uses a previously undescribed strategy to recognize the L. bacterium Cas12a (LbCas12a) pre-crRNA processing nuclease, forming a Cas12a dimer, and allosterically inhibiting DNA binding. The Ac. species Cas12a (AsCas12a) enzyme, widely used for genome editing applications, contains an ancestral helical bundle that blocks AcrVA4 binding and allows it to escape anti-CRISPR recognition. Using biochemical, microbiological, and human cell editing experiments, we show that Cas12a orthologs can be rendered either sensitive or resistant to AcrVA4 through rational structural engineering informed by evolution. Together, these findings explain a new mode of CRISPR-Cas inhibition and illustrate how structural variability in Cas effectors can drive opportunistic co-evolution of inhibitors by bacteriophage.

Funder

Defense Advanced Research Projects Agency

Paul G. Allen Frontiers Group

National Science Foundation

Howard Hughes Medical Institute

National Institutes of Health

National Institute of General Medical Sciences

W. M. Keck Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference55 articles.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3