Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations

Author:

Zhang Limei12ORCID,Hernandez Vito S1ORCID,Gerfen Charles R3,Jiang Sunny Z2,Zavala Lilian1,Barrio Rafael A24ORCID,Eiden Lee E2ORCID

Affiliation:

1. Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico

2. Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States

3. Laboratory of Systems Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States

4. Department of Complex Systems, Institute of Physics, National Autonomous University of Mexico (UNAM), Mexico, Mexico

Abstract

The neuropeptide PACAP, acting as a co-transmitter, increases neuronal excitability, which may enhance anxiety and arousal associated with threat conveyed by multiple sensory modalities. The distribution of neurons expressing PACAP and its receptor, PAC1, throughout the mouse nervous system was determined, in register with expression of glutamatergic and GABAergic neuronal markers, to develop a coherent chemoanatomical picture of PACAP role in brain motor responses to sensory input. A circuit role for PACAP was tested by observing Fos activation of brain neurons after olfactory threat cue in wild-type and PACAP knockout mice. Neuronal activation and behavioral response, were blunted in PACAP knock-out mice, accompanied by sharply downregulated vesicular transporter expression in both GABAergic and glutamatergic neurons expressing PACAP and its receptor. This report signals a new perspective on the role of neuropeptide signaling in supporting excitatory and inhibitory neurotransmission in the nervous system within functionally coherent polysynaptic circuits.

Funder

Consejo Nacional de Ciencia y Tecnología

National Institute of Mental Health

Universidad Nacional Autónoma de México

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3