Affiliation:
1. Department of Molecular Biomedicine CINVESTAV-IPN
2. Department of Infectomics and Molecular Pathogenesis CINVESTAV-IPN
3. Department of Biochemistry, CINVESTAV-IPN
4. Laboratorio de Patogénesis Molecular, Facultad de Estudios Superiores de Iztacala, UNAM
Abstract
Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in HUVEC causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage and vascular congestion, increased F-actin levels and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.
Publisher
eLife Sciences Publications, Ltd