The positioning mechanics of microtubule asters in Drosophila embryo explants

Author:

de-Carvalho Jorge1ORCID,Tlili Sham2ORCID,Saunders Timothy E.234ORCID,Telley Ivo A.1ORCID

Affiliation:

1. Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian

2. Mechanobiology Institute and Department of Biological Sciences, National University of Singapore

3. Institute of Molecular and Cellular Biology

4. Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick

Abstract

Microtubule asters are essential in localizing the action of microtubules in processes including mitosis and organelle positioning. In large cells, such as the one-cell sea urchin embryo, aster dynamics are dominated by hydrodynamic pulling forces. However, in systems with more densely positioned nuclei such as the early Drosophila embryo, which packs around 6000 nuclei within the syncytium in a crystalline-like order, it is unclear what processes dominate aster dynamics. Here, we take advantage of a cell cycle regulation Drosophila mutant to generate embryos with multiple asters, independent from nuclei. We use an ex vivo assay to further simplify this biological system to explore the forces generated by and between asters. Through live imaging, drug and optical perturbations, and theoretical modelling, we demonstrate that these asters likely generate an effective pushing force over short distances.Using cytosolic explants from Drosophila syncytial embryos combined with quantitative microscopy and perturbations, de-Carvalho et al ., reveal the mechanical forces separating Drosophila microtubule asters. Aster separation drives precise nuclear positioning in multinucleated embryo cells, a vital process for tissue formation and gene expression during subsequent embryo development.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3