MDverse: Shedding Light on the Dark Matter of Molecular Dynamics Simulations

Author:

Tiemann Johanna K. S.1ORCID,Szczuka Magdalena2ORCID,Bouarroudj Lisa3ORCID,Oussaren Mohamed3ORCID,Garcia Steven4ORCID,Howard Rebecca J.5ORCID,Delemotte Lucie6ORCID,Lindahl Erik56ORCID,Baaden Marc7ORCID,Lindorff-Larsen Kresten1ORCID,Chavent Matthieu2ORCID,Poulain Pierre3ORCID

Affiliation:

1. Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen

2. Institut de Pharmacologie et Biologie Structurale, CNRS, Université de Toulouse

3. Université Paris Cité, CNRS, Institut Jacques Monod

4. Independent researcher

5. Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University

6. Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology

7. Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité

Abstract

The rise of open science and the absence of a global dedicated data repository for molecular dynamics (MD) simulations has led to the accumulation of MD files in generalist data repositories, constituting the dark matter of MD — data that is technically accessible, but neither indexed, curated, or easily searchable. Leveraging an original search strategy, we found and indexed about 250,000 files and 2,000 datasets from Zenodo, Figshare and Open Science Framework. With a focus on files produced by the Gromacs MD software, we illustrate the potential offered by the mining of publicly available MD data. We identified systems with specific molecular composition and were able to characterize essential parameters of MD simulation such as temperature and simulation length, and could identify model resolution, such as all-atom and coarse-grain. Based on this analysis, we inferred metadata to propose a search engine prototype to explore the MD data. To continue in this direction, we call on the community to pursue the effort of sharing MD data, and to report and standardize metadata to reuse this valuable matter.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3