Affiliation:
1. Department of Biology and Biological Engineering, California Institute of Technology
2. Department of Cell Biology, School of Science, University of Extremadura
Abstract
The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We genetically eliminated more than 95% of M/Ts in early postnatal mice, and observed that the assembly of the OB bulb circuits occurred normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs Surprisingly, the ability of these mice to detect odors was relatively preserved despite only having 1-5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.
Publisher
eLife Sciences Publications, Ltd