Affiliation:
1. Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University (OIST)
Abstract
After exocytosis, release sites are cleared of vesicular residues to replenish with transmitter-filled vesicles. Endocytic and scaffold proteins are thought to underlie this site-clearance mechanism. However, the physiological significance of this mechanism at diverse mammalian central synapses remains unknown. Here, we tested this in a physiologically optimized condition using action potential evoked EPSCs at fast calyx synapse and relatively slow hippocampal CA1 synapse, in post-hearing mice brain slices at 37°C and in 1.3 mM [Ca
2+
]. Pharmacological block of endocytosis enhanced synaptic depression at the calyx synapse, whereas it attenuated synaptic facilitation at the hippocampal synapse. Block of scaffold protein activity likewise enhanced synaptic depression at the calyx but had no effect at the hippocampal synapse. At the fast calyx synapse, block of endocytosis or scaffold protein activity significantly enhanced synaptic depression as early as 10 ms after the stimulation onset. Unlike previous reports, neither endocytic blockers nor scaffold protein inhibitors prolonged the recovery from short-term depression. We conclude that the release-site clearance by endocytosis can be a universal phenomenon supporting vesicle replenishment at both fast and slow synapses, whereas the presynaptic scaffold mechanism likely plays a specialized role in vesicle replenishment predominantly at fast synapses.
Publisher
eLife Sciences Publications, Ltd