Transformer-based spatial–temporal detection of apoptotic cell death in live-cell imaging

Author:

Pulfer Alain12ORCID,Pizzagalli Diego Ulisse13,Gagliardi Paolo Armando4ORCID,Hinderling Lucien4ORCID,Lopez Paul5,Zayats Romaniya5,Carrillo-Barberà Pau16,Antonello Paola14,Palomino-Segura Miguel7,Grädel Benjamin4ORCID,Nicolai Mariaclaudia3,Giusti Alessandro8,Thelen Marcus1ORCID,Gambardella Luca Maria8,Murooka Thomas T5,Pertz Olivier4ORCID,Krause Rolf3,Gonzalez Santiago Fernandez1ORCID

Affiliation:

1. Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USI

2. Department of Information Technology and Electrical Engineering, ETH Zurich

3. Euler Institute, USI

4. Institute of Cell Biology, University of Bern

5. University of Manitoba

6. Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València

7. Centro Nacional de Investigaciones Cardiovasculares

8. Dalle Molle Institute for Artificial Intelligence, IDSIA

Abstract

Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial–temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial–temporal regulation of this process.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Swiss Cancer League

System X

CIHR Skin Research Training Centre

Suisse National Science Foundation

Uniscientia Foundation

Novartis Foundation for Medical-Biological Research

The Helmut Horten Foundation

NCCR Robotics program of the Swiss National Science Foundation

Biolink

Publisher

eLife Sciences Publications, Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence for high content imaging in drug discovery;Current Opinion in Structural Biology;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3