Theta cycle dynamics of spatial representations in the lateral septum

Author:

Bzymek Katarzyna12,Kloosterman Fabian12ORCID

Affiliation:

1. Brain & Cognition, KU Leuven

2. Neuro-Electronics Research Flanders

Abstract

An internal representation of the environment – or map – allows animals to evaluate multiple routes and adapt their navigation strategy to current needs and future goals. The hippocampal formation plays a crucial role in learning a spatial map and using the map for goal-directed navigation. The lateral septum forms a major node for connections between the hippocampus and subcortical brain regions that could link the spatial map to motivation and reward processing centers such as the ventral tegmental area and hypothalamus. It is not known, however, how the lateral septum contributes to the processing of spatial information and route planning.In this study, we investigated the temporal dynamics of spatial representations in the lateral septum. Neuropixels probes were used to record cellular activity along the dorsal-ventral extent of the lateral septum while rats performed one of two spatial navigation tasks in a Y-maze. The activity of a large fraction of cells was theta rhythmic and a subset of cells showed evidence of being active on alternate theta cycles (theta cycle skipping). Both theta rhythmicity and cycle skipping were strongest in the dorsal lateral septum. Similarly, spatially selective firing was most prominent in the dorsal lateral septum. Using neural decoding, we show that the lateral septum cell population encodes both the current location and alternatingly the possible future paths within single theta cycles when rats approach the choice point in the maze.Our data further shows that the alternating expression of spatial representations in the lateral septum is task-dependent, such that it is strongest when the task also requires the animals to alternate between rewarded goal arms. These data suggest that task demands and experience shape which representations are activated near a choice point. The lateral septum receives strong input from hippocampal place cells, and while there may be integration and transformation of incoming spatial signals, our findings support the idea that hippocampal spatial representations and their temporal dynamics are conveyed to subcortical projection areas through the lateral septum.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3