Visual pursuit behavior in mice maintains the pursued prey on the retinal region with least optic flow

Author:

Holmgren Carl D1,Stahr Paul1,Wallace Damian J1,Voit Kay-Michael1,Matheson Emily J1,Sawinski Juergen1,Bassetto Giacomo12,Kerr Jason ND1ORCID

Affiliation:

1. Department of Behavior and Brain Organization, Research center caesar, Bonn, Germany

2. Machine Learning in Science, Eberhard Karls University of Tübingen, Tübingen, Germany

Abstract

Mice have a large visual field that is constantly stabilized by vestibular ocular reflex (VOR) driven eye rotations that counter head-rotations. While maintaining their extensive visual coverage is advantageous for predator detection, mice also track and capture prey using vision. However, in the freely moving animal quantifying object location in the field of view is challenging. Here, we developed a method to digitally reconstruct and quantify the visual scene of freely moving mice performing a visually based prey capture task. By isolating the visual sense and combining a mouse eye optic model with the head and eye rotations, the detailed reconstruction of the digital environment and retinal features were projected onto the corneal surface for comparison, and updated throughout the behavior. By quantifying the spatial location of objects in the visual scene and their motion throughout the behavior, we show that the prey image consistently falls within a small area of the VOR-stabilized visual field. This functional focus coincides with the region of minimal optic flow within the visual field and consequently area of minimal motion-induced image-blur, as during pursuit mice ran directly toward the prey. The functional focus lies in the upper-temporal part of the retina and coincides with the reported high density-region of Alpha-ON sustained retinal ganglion cells.

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference71 articles.

1. Self-motion-induced eye movements: effects on visual acuity and navigation;Angelaki;Nature Reviews Neuroscience,2005

2. Diet of the house mouse (Mus-Musculus L) in 2 pine and a kauri forest;Badan;New Zealand Journal of Ecology,1986

3. The functional diversity of retinal ganglion cells in the mouse;Baden;Nature,2016

4. Two models of experimental myopia in the mouse;Barathi;Vision Research,2008

5. Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types;Bleckert;Current Biology,2014

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3