Affiliation:
1. Department of Chemical and Biological Engineering, University of Wisconsin–Madison
2. Theodor Kocher Institute, University of Bern
3. Department of Neurological Surgery, University of Wisconsin–Madison
Abstract
Endothelial cells (ECs) in the central nervous system (CNS) acquire their specialized blood–brain barrier (BBB) properties in response to extrinsic signals, with Wnt/β-catenin signaling coordinating multiple aspects of this process. Our knowledge of CNS EC development has been advanced largely by animal models, and human pluripotent stem cells (hPSCs) offer the opportunity to examine BBB development in an in vitro human system. Here, we show that activation of Wnt signaling in hPSC-derived naïve endothelial progenitors, but not in matured ECs, leads to robust acquisition of canonical BBB phenotypes including expression of GLUT-1, increased claudin-5, decreased PLVAP, and decreased permeability. RNA-seq revealed a transcriptome profile resembling ECs with CNS-like characteristics, including Wnt-upregulated expression of LEF1, APCDD1, and ZIC3. Together, our work defines effects of Wnt activation in naïve ECs and establishes an improved hPSC-based model for interrogation of CNS barriergenesis.
Funder
National Institutes of Health
National Science Foundation
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Bern Center for Precision Medicine
Japan Society for the Promotion of Science
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献