Affiliation:
1. Vascular Cell Biology, Max Planck Institute of Molecular Biomedicine, Münster, Germany
Abstract
Arrest of rapidly flowing neutrophils in venules relies on capturing through selectins and chemokine-induced integrin activation. Despite a long-established concept, we show here that gene inactivation of activating paired immunoglobulin-like receptor (PILR)-β1 nearly halved the efficiency of neutrophil arrest in venules of the mouse cremaster muscle. We found that this receptor binds to CD99, an interaction which relies on flow-induced shear forces and boosts chemokine-induced β2-integrin-activation, leading to neutrophil attachment to endothelium. Upon arrest, binding of PILR-β1 to CD99 ceases, shifting the signaling balance towards inhibitory PILR-α. This enables integrin deactivation and supports cell migration. Thus, flow-driven shear forces guide sequential signaling of first activating PILR-β1 followed by inhibitory PILR-α to prompt neutrophil arrest and then transmigration. This doubles the efficiency of selectin-chemokine driven neutrophil arrest by PILR-β1 and then supports transition to migration by PILR-α.
Funder
Deutsche Forschungsgemeinschaft
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献