NetTCR 2.2 - Improved TCR specificity predictions by combining pan- and peptide-specific training strategies, loss-scaling and integration of sequence similarity

Author:

Jensen Mathias Fynbo1ORCID,Nielsen Morten1

Affiliation:

1. Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU

Abstract

The ability to predict binding between peptides presented by the Major Histocompatibility Complex (MHC) class I molecules and T-cell receptors (TCR) is of great interest in areas of vaccine development, cancer treatment and treatment of autoimmune diseases. However, the scarcity of paired-chain data, combined with the bias towards a few well-studied epitopes, has challenged the development of pan-specific machine-learning (ML) models with accurate predictive power towards peptides characterized by little or no TCR data. To deal with this, we here benefit from a larger paired-chain peptide-TCR dataset and explore different ML model architectures and training strategies to better deal with imbalanced data. We show that while simple changes to the architecture and training strategies results in greatly improved performance, particularly for peptides with little available data, predictions on unseen peptides remain challenging, especially for peptides distant to the training peptides. We also demonstrate that ML models can be used to detect potential outliers, and that the removal of such outliers from training further improves the overall performance. Furthermore, we show that a model combining the properties of pan-specific and peptide-specific models achieves improved performance, and that performance can be further improved by integrating similarity-based predictions, especially when a low false positive rate is desirable. Moreover, in the context of the IMMREP 2022 benchmark, this updated modeling framework archived state-of-the-art performance. Finally, we show that combining all these approaches results in acceptable predictive accuracy for peptides characterized with as little as 15 positive TCRs. This observation thus places great promise on rapidly expanding the peptide covering of the current models for predicting TCR specificity. The final NetTCR 2.2 models are available at https://github.com/mnielLab/NetTCR-2.2, and as a web server at https://services.healthtech.dtu.dk/services/NetTCR-2.2/.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3