Combinatorial CRISPR screen reveals FYN and KDM4 as targets for synergistic drug combination for treating triple negative breast cancer

Author:

Kim Tackhoon1234ORCID,Park Byung-Sun12,Heo Soobeen5,Jeon Heeju12,Kim Jaeyeal12,Kim Donghwa6,Lee Sang Kook6,Jung So-Youn7,Kong Sun-Young58,Lu Timothy K.4

Affiliation:

1. Medicinal Materials Research Center, Korea Institute of Science and Technology

2. Department of Biological Sciences, Korea University

3. Division of Bio-Medical Science and Technology, Korea University of Science and Technology

4. Research Lab of Electronics, Massachusetts Institute of Technology

5. Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center

6. College of Pharmacy, Natural Products Research Institute, Seoul National University

7. Division of Breast Surgery, Department of Surgery, National Cancer Center

8. Department of Laboratory Medicine, National Cancer Center

Abstract

Tyrosine kinases play a crucial role in cell proliferation and survival and are extensively investigated as targets for cancer treatment. However, the efficacy of most tyrosine kinase inhibitors (TKIs) in cancer therapy is limited due to resistance. In this study, we identify a synergistic combination therapy involving TKIs for the treatment of triple negative breast cancer. By employing massively parallel combinatorial CRISPR screens, we identify FYN and KDM4 as critical targets whose inhibition enhances the effectiveness of TKIs, such as NVP-ADW742 (IGF-1R inhibitor), gefitinib (EGFR inhibitor), and Imatinib (ABL inhibitor) both in vitro and in vivo . Mechanistically, treatment with TKIs upregulates the transcription of KDM4 , which in turn demethylates H3K9me3 at FYN enhancer for FYN transcription. This compensatory activation of FYN and KDM4 contributes to the resistance against TKIs. We highlight FYN as a broadly applicable mediator of therapy resistance and persistence by demonstrating its upregulation in various experimental models of drug-tolerant persisters and residual disease following targeted therapy, chemotherapy, and radiotherapy. Collectively, our study provides novel targets and mechanistic insights that can guide the development of effective combinatorial targeted therapies, thus maximizing the therapeutic benefits of TKIs.

Publisher

eLife Sciences Publications, Ltd

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3