The interplay between biomolecular assembly and phase separation

Author:

Bartolucci Giacomo12ORCID,Haugerud Ivar S.2ORCID,Michaels Thomas C.T.3ORCID,Weber Christoph A.2ORCID

Affiliation:

1. Max Planck Institute for the Physics of Complex Systems

2. Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstraße 1

3. ETH Zurich, Institute of Biochemistry

Abstract

Many biological functions and dysfunctions rely on two fundamental processes, molecular assembly and the formation of condensed phases such as biomolecular condensates. Condensed phases generally form via phase separation, while molecular assemblies are clusters of molecules of various sizes, shapes, and functionality. We developed a theory that relies on thermodynamic principles to understand the interplay between molecular assembly and phase separation. We propose two prototypical classes of protein interactions and characterize their different equilibrium states and relaxation dynamics. We obtain results consistent with recent in vitro experimental observations of reconstituted proteins, including anomalous size distribution of assemblies, the gelation of condensed phases, and the change in condensate volume during ageing. Our theory provides the framework to unravel the mechanisms underlying physiological assemblies essential for cellular function, and aberrant assemblies that are associated with several neurodegenerative disorders.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3