Rpl24Bst mutation suppresses colorectal cancer by promoting eEF2 phosphorylation via eEF2K

Author:

Knight John RP1ORCID,Vlahov Nikola1,Gay David M12,Ridgway Rachel A1,Faller William James1,Proud Christopher34,Mallucci Giovanna R5,von der Haar Tobias6ORCID,Smales Christopher Mark6,Willis Anne E7ORCID,Sansom Owen J12ORCID

Affiliation:

1. CRUK Beatson Institute, Garscube Estate

2. Institute of Cancer Sciences, University of Glasgow

3. Department of Biological Sciences, University of Adelaide

4. Lifelong Health, South Australian Health and Medical Research Institute

5. UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge

6. School of Biosciences, Division of Natural Sciences, University of Kent

7. MRC Toxicology Unit, University of Cambridge

Abstract

Increased protein synthesis supports the rapid cell proliferation associated with cancer. The Rpl24Bst mutant mouse reduces the expression of the ribosomal protein RPL24 and has been used to suppress translation and limit tumorigenesis in multiple mouse models of cancer. Here, we show that Rpl24Bst also suppresses tumorigenesis and proliferation in a model of colorectal cancer (CRC) with two common patient mutations, Apc and Kras. In contrast to previous reports, Rpl24Bst mutation has no effect on ribosomal subunit abundance but suppresses translation elongation through phosphorylation of eEF2, reducing protein synthesis by 40% in tumour cells. Ablating eEF2 phosphorylation in Rpl24Bst mutant mice by inactivating its kinase, eEF2K, completely restores the rates of elongation and protein synthesis. Furthermore, eEF2K activity is required for the Rpl24Bst mutant to suppress tumorigenesis. This work demonstrates that elevation of eEF2 phosphorylation is an effective means to suppress colorectal tumorigenesis with two driver mutations. This positions translation elongation as a therapeutic target in CRC, as well as in other cancers where the Rpl24Bst mutation has a tumour suppressive effect in mouse models.

Funder

Cancer Research UK

H2020 European Research Council

Wellcome Trust

National Health and Medical Research Council

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3