Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision

Author:

Watson James A12ORCID,Ndila Carolyne M12,Uyoga Sophie3,Macharia Alexander3,Nyutu Gideon3,Mohammed Shebe3,Ngetsa Caroline3,Mturi Neema3,Peshu Norbert3,Tsofa Benjamin3,Rockett Kirk45,Leopold Stije12ORCID,Kingston Hugh12ORCID,George Elizabeth C6,Maitland Kathryn37ORCID,Day Nicholas PJ12ORCID,Dondorp Arjen M12ORCID,Bejon Philip23,Williams Thomas N37ORCID,Holmes Chris C89,White Nicholas J12ORCID

Affiliation:

1. Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University

2. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford

3. KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast

4. The Wellcome Sanger Institute

5. Wellcome Trust Centre for Human Genetics, University of Oxford

6. Medical Research Council Clinical Trials Unit, University College London

7. Institute of Global Health Innovation, Imperial College, London

8. Nuffield Department of Medicine, University of Oxford

9. Department of Statistics, University of Oxford

Abstract

Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies.

Funder

Wellcome Trust

Medical Research Council

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3