A Logic-incorporated Gene Regulatory Network Deciphers Principles in Cell Fate Decisions

Author:

Xue Gang1ORCID,Zhang Xiaoyi2,Li Wanqi1,Zhang Lu2,Zhang Zongxu2,Zhou Xiaolin1,Zhang Di2ORCID,Zhang Lei23ORCID,Li Zhiyuan12ORCID

Affiliation:

1. Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University

2. Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University

3. Beijing International Center for Mathematical Research, Center for Machine Learning Research, Peking University

Abstract

Organisms utilize gene regulatory networks (GRNs) to make fate decisions, but the regulatory mechanisms of transcription factors (TFs) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision- making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top- down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

Publisher

eLife Sciences Publications, Ltd

Reference115 articles.

1. The geometry of cell fate;Cell Syst,2022

2. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming;Cell,2019

3. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice;Nature,2016

4. A deterministic map of Waddington’s epigenetic landscape for cell fate specification;BMC Systems Biology,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3