Epistasis facilitates functional evolution in an ancient transcription factor

Author:

Metzger Brian P.H.12ORCID,Park Yeonwoo34ORCID,Starr Tyler N.56ORCID,Thornton Joseph W.137

Affiliation:

1. Department of Ecology and Evolution, University of Chicago, 60637 USA

2. Department of Biological Sciences, Purdue University

3. Program in Genetics, Genomics, and Systems Biology, University of Chicago, 60637 USA

4. Center for RNA Research, Seoul National University

5. Department of Biochemistry and Molecular Biophysics, University of Chicago, 60637 USA

6. Department of Biochemistry, University of Utah

7. Department of Human Genetics, University of Chicago, 60637 USA

Abstract

A protein’s genetic architecture – the set of causal rules by which its sequence determines its specific functions – also determines the functional impacts of mutations and the protein’s evolutionary potential. Prior research has proposed that proteins’ genetic architecture is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has considered only the amino acid states present in two sequences of interest and the direct paths between them, but real proteins evolve in a multidimensional space of 20 possible amino acids per site. Moreover, almost all prior work has assayed the effect of sequence variation on a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impacts on the evolution of new functions. Here we develop a new logistic regression-based method to directly characterize the global causal rules of the genetic architecture of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We apply it to dissect the genetic architecture and evolution of a transcription factor’s specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor’s capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition and specificity consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. Epistasis also massively expands the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.

Publisher

eLife Sciences Publications, Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3