Affiliation:
1. Department of Applied Chemistry, The University of Tokyo
2. Research Center for Advanced Science and Technology, The University of Tokyo
Abstract
Using the X-ray free-electron laser (XFEL) structures of the photosynthetic reaction center from Blastochloris viridis that show light-induced time-dependent structural changes (Dods et al., (2021) Nature 589, 310–314), we investigated time-dependent changes in the energetics of the electron-transfer pathway, considering the entire protein environment of the protein structures and titrating the redox-active sites in the presence of all fully equilibrated titratable residues. In the dark and charge separation intermediate structures, the calculated redox potential (Em) values for the accessory bacteriochlorophyll and bacteriopheophytin in the electron-transfer-active branch (BL and HL) are higher than those in the electron-transfer-inactive branch (BM and HM). However, the stabilization of the charge-separated [PLPM]•+HL•– state owing to protein reorganization is not clearly observed in the Em(HL) values in the charge-separated 5 ps ([PLPM]•+HL•– state) structure. Furthermore, the expected chlorin ring deformation upon formation of HL•– (saddling mode) is absent in the HL geometry of the original 5 ps structure. These findings suggest that there is no clear link between the time-dependent structural changes and the electron-transfer events in the XFEL structures.
Funder
Japan Society for the Promotion of Science
University of Tsukuba
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献