Loss of Fam60a, a Sin3a subunit, results in embryonic lethality and is associated with aberrant methylation at a subset of gene promoters

Author:

Nabeshima Ryo12ORCID,Nishimura Osamu34ORCID,Maeda Takako1,Shimizu Natsumi2ORCID,Ide Takahiro2ORCID,Yashiro Kenta1,Sakai Yasuo1,Meno Chikara1,Kadota Mitsutaka34,Shiratori Hidetaka1,Kuraku Shigehiro34ORCID,Hamada Hiroshi12ORCID

Affiliation:

1. Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan

2. Laboratory for Organismal Patterning, RIKEN Center for Developmental Biology, Kobe, Japan

3. Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan

4. Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan

Abstract

We have examined the role of Fam60a, a gene highly expressed in embryonic stem cells, in mouse development. Fam60a interacts with components of the Sin3a-Hdac transcriptional corepressor complex, and most Fam60a–/– embryos manifest hypoplasia of visceral organs and die in utero. Fam60a is recruited to the promoter regions of a subset of genes, with the expression of these genes being either up- or down-regulated in Fam60a–/– embryos. The DNA methylation level of the Fam60a target gene Adhfe1 is maintained at embryonic day (E) 7.5 but markedly reduced at E9.5 in Fam60a–/– embryos, suggesting that DNA demethylation is enhanced in the mutant. Examination of genome-wide DNA methylation identified several differentially methylated regions, which were preferentially hypomethylated, in Fam60a–/– embryos. Our data suggest that Fam60a is required for proper embryogenesis, at least in part as a result of its regulation of DNA methylation at specific gene promoters.

Funder

Ministry of Education, Culture, Sports, Science, and Technology

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3