Flotillin-mediated membrane fluidity controls peptidoglycan synthesis and MreB movement

Author:

Zielińska Aleksandra1,Savietto Abigail23,de Sousa Borges Anabela1,Martinez Denis4,Berbon Melanie4,Roelofsen Joël R1,Hartman Alwin M567,de Boer Rinse8,Van der Klei Ida J8ORCID,Hirsch Anna KH567,Habenstein Birgit4,Bramkamp Marc23ORCID,Scheffers Dirk-Jan1ORCID

Affiliation:

1. Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands

2. Biozentrum, Ludwig-Maximilians-Universität München, München, Germany

3. Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany

4. Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université Bordeaux, Institut Polytechnique Bordeaux, Pessac, France

5. Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany

6. Department of Pharmacy, Saarland University, Saarbrücken, Germany

7. Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands

8. Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands

Abstract

The bacterial plasma membrane is an important cellular compartment. In recent years it has become obvious that protein complexes and lipids are not uniformly distributed within membranes. Current hypotheses suggest that flotillin proteins are required for the formation of complexes of membrane proteins including cell-wall synthetic proteins. We show here that bacterial flotillins are important factors for membrane fluidity homeostasis. Loss of flotillins leads to a decrease in membrane fluidity that in turn leads to alterations in MreB dynamics and, as a consequence, in peptidoglycan synthesis. These alterations are reverted when membrane fluidity is restored by a chemical fluidizer. In vitro, the addition of a flotillin increases membrane fluidity of liposomes. Our data support a model in which flotillins are required for direct control of membrane fluidity rather than for the formation of protein complexes via direct protein-protein interactions.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Deutsche Forschungsgemeinschaft

European Research Council

Deutscher Akademischer Austauschdienst

Fundação para a Ciência e a Tecnologia

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3