Extensive horizontal gene transfer in cheese-associated bacteria

Author:

Bonham Kevin S1ORCID,Wolfe Benjamin E2,Dutton Rachel J13ORCID

Affiliation:

1. Division of Biological Sciences, University of California, San Diego, San Diego, United States

2. Department of Biology, Tufts University, Medford, United States

3. Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, San Diego, United States

Abstract

Acquisition of genes through horizontal gene transfer (HGT) allows microbes to rapidly gain new capabilities and adapt to new or changing environments. Identifying widespread HGT regions within multispecies microbiomes can pinpoint the molecular mechanisms that play key roles in microbiome assembly. We sought to identify horizontally transferred genes within a model microbiome, the cheese rind. Comparing 31 newly sequenced and 134 previously sequenced bacterial isolates from cheese rinds, we identified over 200 putative horizontally transferred genomic regions containing 4733 protein coding genes. The largest of these regions are enriched for genes involved in siderophore acquisition, and are widely distributed in cheese rinds in both Europe and the US. These results suggest that HGT is prevalent in cheese rind microbiomes, and that identification of genes that are frequently transferred in a particular environment may provide insight into the selective forces shaping microbial communities.

Funder

National Institutes of Health

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference85 articles.

1. Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products;Almeida;BMC Genomics,2014

2. Horizontal gene flow in Managed Ecosystems;Andam;Annual Review of Ecology, Evolution, and Systematics,2015

3. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing;Bankevich;Journal of Computational Biology,2012

4. Datasets associated with Bonham, et al;Bonham,2016

5. Kvasir: release for publication;Bonham,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3