Computational design of environmental sensors for the potent opioid fentanyl

Author:

Bick Matthew J1ORCID,Greisen Per J1,Morey Kevin J2,Antunes Mauricio S2,La David1,Sankaran Banumathi3,Reymond Luc45,Johnsson Kai45,Medford June I2,Baker David16ORCID

Affiliation:

1. Department of Biochemistry, University of Washington, Seattle, United States

2. Department of Biology, Colorado State University, Fort Collins, United States

3. Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, United States

4. Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland

5. Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany

6. Howard Hughes Medical Institute, University of Washington, Seattle, United States

Abstract

We describe the computational design of proteins that bind the potent analgesic fentanyl. Our approach employs a fast docking algorithm to find shape complementary ligand placement in protein scaffolds, followed by design of the surrounding residues to optimize binding affinity. Co-crystal structures of the highest affinity binder reveal a highly preorganized binding site, and an overall architecture and ligand placement in close agreement with the design model. We use the designs to generate plant sensors for fentanyl by coupling ligand binding to design stability. The method should be generally useful for detecting toxic hydrophobic compounds in the environment.

Funder

National Cancer Institute

Howard Hughes Medical Institute

Defense Threat Reduction Agency

European Molecular Biology Organization

Carlsbergfondet

National Institutes of Health

National Institute of General Medical Sciences

U.S. Department of Energy

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3