Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI

Author:

Arichi Tomoki12ORCID,Whitehead Kimberley3,Barone Giovanni14,Pressler Ronit5,Padormo Francesco16,Edwards A David12ORCID,Fabrizi Lorenzo3ORCID

Affiliation:

1. Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom

2. Department of Bioengineering, Imperial College London, London, United Kingdom

3. Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom

4. Department of Pediatrics, Catholic University of Sacred Heart, Rome, Italy

5. Clinical Neurosciences, UCL-Institute of Child Health, London, United Kingdom

6. Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, United States

Abstract

Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32–36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.

Funder

Medical Research Council

National Institute for Health Research

Academy of Medical Sciences

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3