Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia

Author:

Hu Xuchen1ORCID,Weston Thomas A1,He Cuiwen1,Jung Rachel S1,Heizer Patrick J1,Young Brian D2,Tu Yiping1,Tontonoz Peter3ORCID,Wohlschlegel James A2,Jiang Haibo14ORCID,Young Stephen G15ORCID,Fong Loren G1ORCID

Affiliation:

1. Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States

2. Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States

3. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States

4. School of Molecular Sciences, University of Western Australia, Perth, Australia

5. Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States

Abstract

Cultured mouse peritoneal macrophages release large numbers of ~30-nm cholesterol-rich particles. Here, we show that those particles represent fragments of the plasma membrane that are pulled away and left behind during the projection and retraction of filopodia and lamellipodia. Consistent with this finding, the particles are enriched in proteins found in focal adhesions, which attach macrophages to the substrate. The release of particles is abolished by blocking cell movement (either by depolymerizing actin with latrunculin A or by inhibiting myosin II with blebbistatin). Confocal microscopy and NanoSIMS imaging studies revealed that the plasma membrane–derived particles are enriched in ‘accessible cholesterol’ (a mobile pool of cholesterol detectable with the modified cytolysin ALO-D4) but not in sphingolipid-sequestered cholesterol [a pool detectable with ostreolysin A (OlyA)]. The discovery that macrophages release cholesterol-rich particles during cellular locomotion is likely relevant to cholesterol efflux and could contribute to extracellular cholesterol deposition in atherosclerotic plaques.

Funder

National Heart, Lung, and Blood Institute

Fondation Leducq

Ruth L Kirschstein National Research Service Award

Australian Research Council

Cancer Council Western Australia

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3