Multivalency regulates activity in an intrinsically disordered transcription factor

Author:

Clark Sarah1,Myers Janette B2ORCID,King Ashleigh34,Fiala Radovan5,Novacek Jiri5,Pearce Grant6ORCID,Heierhorst Jörg34ORCID,Reichow Steve L2,Barbar Elisar J1ORCID

Affiliation:

1. Department of Biochemistry and Biophysics, Oregon State University, Oregon, United States

2. Department of Chemistry, Portland State University, Oregon, United States

3. St. Vincent’s Institute of Medical Research, The University of Melbourne, Victoria, Australia

4. Department of Medicine, St. Vincent’s Health, The University of Melbourne, Victoria, Australia

5. Central European Institute of Technology, Masaryk University, Brno, Czech Republic

6. School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

Abstract

The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation.

Funder

National Health and Medical Research Council

Victorian State Government

National Institute of General Medical Sciences

College of Science at Oregon State University

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3