Affiliation:
1. Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, United States
Abstract
Rhomboid proteases reside within cellular membranes, but the advantage of this unusual environment is unclear. We discovered membrane immersion allows substrates to be identified in a fundamentally-different way, based initially upon exposing ‘masked’ conformational dynamics of transmembrane segments rather than sequence-specific binding. EPR and CD spectroscopy revealed that the membrane restrains rhomboid gate and substrate conformation to limit proteolysis. True substrates evolved intrinsically-unstable transmembrane helices that both become unstructured when not supported by the membrane, and facilitate partitioning into the hydrophilic, active-site environment. Accordingly, manipulating substrate and gate dynamics in living cells shifted cleavage sites in a manner incompatible with extended sequence binding, but correlated with a membrane-and-helix-exit propensity scale. Moreover, cleavage of diverse non-substrates was provoked by single-residue changes that destabilize transmembrane helices. Membrane immersion thus bestows rhomboid proteases with the ability to identify substrates primarily based on reading their intrinsic transmembrane dynamics.
Funder
Howard Hughes Medical Institute
National Institutes of Health
Packard Foundation
National Institutes of HealthInstitute
David and Lucile Packard Foundation
Publisher
eLife Sciences Publications, Ltd
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献