A neuronal least-action principle for real-time learning in cortical circuits

Author:

Senn Walter1ORCID,Dold Dominik123,Kungl Akos F.12,Ellenberger Benjamin14,Jordan Jakob1,Bengio Yoshua5,Sacramento João6,Petrovici Mihai A.12

Affiliation:

1. Department of Physiology, University of Bern

2. Kirchhoff-Institute for Physics, Heidelberg University

3. European Space Research and Technology Centre, European Space Agency

4. Insel Data Science Center, University Hospital Bern

5. MILA, University of Montreal

6. Department of Computer Science, ETH Zurich

Abstract

One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioural outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimize the local somato-dendritic mismatch error within individual neurons. For motor output neurons, it implies minimizing an instantaneous behavioural error. For deep network neurons, it implies a prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory inputs and the motor feedback during the whole sensory-motor trajectory. Ongoing synaptic plasticity reduces the somato-dendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic dynamics for global real-time computation and learning in the brain and in physical substrates in general.

Publisher

eLife Sciences Publications, Ltd

Reference95 articles.

1. Synaptic depression and cortical gain control;Science,1997

2. A learning algorithm for Boltzmann machines;Cognitive Science,1985

3. Deep learning without weight transport,2019

4. Conditioning for least action,2012

5. A neural network learns trajectory of motion from the least action principle;Biological Cybernetics,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3