Affiliation:
1. Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
2. School of Applied Biological Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
Abstract
Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here we report that deletion of tricalbins (Tcb1, Tcb2, Tcb3), tethering proteins at endoplasmic reticulum (ER)-plasma membrane (PM) and ER-Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast
Saccharomyces cerevisiae
. In addition, we show that the sphingolipid precursor phytosphingosine accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous phytosphingosine and Tcb3-deleted cells, supporting that phytosphingosine transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.
Publisher
eLife Sciences Publications, Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献