Affiliation:
1. Department of Earth Sciences, The University of Hong Kong
2. Department of Biological and Marine Sciences, University of Hull
3. Institute of Geology and Paleontology, Linyi University
4. Shandong Tianyu Museum of Nature
5. School of Life Sciences, The Chinese University of Hong Kong
Abstract
The “opposite birds” Enantiornithines were the dominant birds of the Mesozoic, but our understanding of their ecology is still tenuous. In particular, diets of enantiornithine species have remained speculative until recently. While this new work has been effective at determining diet within groups of enantiornithines, diet data thus far has been too sparse to comment on larger trends in the diversity and evolution of enantiornithine ecology. We introduce new data on the enantiornithine family Bohaiornithidae, famous for their large size and strong teeth and claws. In tandem with previously-published data on the earlier-diverging pengornithids and later-diverging longipterygids, we comment on the breadth of enantiornithine ecology and potential patterns in which it evolved. Body mass, jaw mechanical advantage, finite element analysis of the jaw, and traditional morphometrics of the claws and skull are compared between bohaiornithids and living birds. The sample size for living bird body mass is over ten times larger than previous studies on longipterygid and pengornithid diet, with implications in interpreting their results. We find bohaiornithids to be ecologically diverse:
Bohaiornis
and
Parabohaiornis
are similar to living plant-eating birds;
Longusunguis
resembles raptorial carnivores;
Zhouornis
is similar to both fruit-eating birds and generalist feeders; and
Shenqiornis
and
Sulcavis
plausibly ate fish, plants, or a mix of both. This ecological diversity is wider than any other enantiornithine family studied previously, which may be driven by strengthening of the jaw relative to other early birds. This strong jaw would allow bohaiornithids to eat harder foods than other birds at the time, but their jaws were weaker than most “strong-jawed” living birds. With these reconstructions of diet in Bohaiornithidae, there is quantitative support for enantiornithines inhabiting nearly every trophic level. By combining these reconstructions with past dietary predictions for Longipterygidae and Pengornithidae, we predict the ancestral enantiornithine bird to have been a generalist which ate a wide variety of foods. This would suggest that the ecological diversity of enantiornithine birds represents specialisation in taking foods their ancestors were already eating, rather than many dramatic changes in diet. However, more quantitative data from across the enantiornithine tree is needed to refine this prediction. By the Early Cretaceous, enantiornithine birds had diversified into a variety of ecological niches in a similar way to crown birds after the K-Pg extinction, adding to the body of evidence that traits unique to crown birds (e.g. a toothless beak or cranial kinesis) cannot completely explain their ecological success.
Publisher
eLife Sciences Publications, Ltd