How accurately can one predict drug binding modes using AlphaFold models?

Author:

Karelina Masha12345ORCID,Noh Joseph J2345,Dror Ron O12345ORCID

Affiliation:

1. Biophysics Program, Stanford University

2. Department of Computer Science, Stanford University

3. Department of Molecular and Cellular Physiology, Stanford University School of Medicine

4. Department of Structural Biology, Stanford University School of Medicine

5. Institute for Computational and Mathematical Engineering, Stanford University

Abstract

Computational prediction of protein structure has been pursued intensely for decades, motivated largely by the goal of using structural models for drug discovery. Recently developed machine-learning methods such as AlphaFold 2 (AF2) have dramatically improved protein structure prediction, with reported accuracy approaching that of experimentally determined structures. To what extent do these advances translate to an ability to predict more accurately how drugs and drug candidates bind to their target proteins? Here, we carefully examine the utility of AF2 protein structure models for predicting binding poses of drug-like molecules at the largest class of drug targets, the G-protein-coupled receptors. We find that AF2 models capture binding pocket structures much more accurately than traditional homology models, with errors nearly as small as differences between structures of the same protein determined experimentally with different ligands bound. Strikingly, however, the accuracy of ligand-binding poses predicted by computational docking to AF2 models is not significantly higher than when docking to traditional homology models and is much lower than when docking to structures determined experimentally without these ligands bound. These results have important implications for all those who might use predicted protein structures for drug discovery.

Funder

National Science Foundation

Novo Nordisk

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference51 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3