Conformational heterogeneity of the BTK PHTH domain drives multiple regulatory states

Author:

Lin David Yin-wei1ORCID,Kueffer Lauren E1,Juneja Puneet2,Wales Thomas E3ORCID,Engen John R3ORCID,Andreotti Amy H1ORCID

Affiliation:

1. Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University

2. Cryo-EM Facility, Office of Biotechnology, Iowa State University

3. Department of Chemistry and Chemical Biology, Northeastern University

Abstract

Full-length Bruton’s tyrosine kinase (BTK) has been refractory to structural analysis. The nearest full-length structure of BTK to date consists of the autoinhibited SH3–SH2–kinase core. Precisely how the BTK N-terminal domains (the Pleckstrin homology/Tec homology [PHTH] domain and proline-rich regions [PRR] contain linker) contribute to BTK regulation remains unclear. We have produced crystals of full-length BTK for the first time but despite efforts to stabilize the autoinhibited state, the diffraction data still reveal only the SH3–SH2–kinase core with no electron density visible for the PHTH–PRR segment. Cryo-electron microscopy (cryoEM) data of full-length BTK, on the other hand, provide the first view of the PHTH domain within full-length BTK. CryoEM reconstructions support conformational heterogeneity in the PHTH–PRR region wherein the globular PHTH domain adopts a range of states arrayed around the autoinhibited SH3–SH2–kinase core. On the way to activation, disassembly of the SH3–SH2–kinase core opens a new autoinhibitory site on the kinase domain for PHTH domain binding that is ultimately released upon interaction of PHTH with phosphatidylinositol (3,4,5)-trisphosphate. Membrane-induced dimerization activates BTK and we present here a crystal structure of an activation loop swapped BTK kinase domain dimer that likely represents the conformational state leading to trans-autophosphorylation. Together, these data provide the first structural elucidation of full-length BTK and allow a deeper understanding of allosteric control over the BTK kinase domain during distinct stages of activation.

Funder

National Institutes of Health

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3