An anciently diverged family of RNA binding proteins maintain correct splicing of a class of ultra-long exons through cryptic splice site repression

Author:

Siachisumo Chileleko1,Luzzi Sara1ORCID,Aldalaqan Saad1,Hysenaj Gerald1,Dalgliesh Caroline1,Cheung Kathleen2,Gazzara Matthew R3,Yonchev Ivaylo D4,James Katherine5,Kheirollahi Chadegani Mahsa1,Ehrmann Ingrid1,Smith Graham R2,Cockell Simon J2ORCID,Munkley Jennifer1,Wilson Stuart A4,Barash Yoseph3ORCID,Elliott David J1ORCID

Affiliation:

1. Biosciences Institute, Faculty of Medical Sciences, Newcastle University

2. Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University

3. Department of Genetics, Perelman School of Medicine, University of Pennsylvania

4. School of Biosciences, University of Sheffield

5. School of Computing, Newcastle University

Abstract

We previously showed that the germ cell specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility. RBMXL2 evolved from the X-linked RBMX gene, which is silenced during meiosis due to sex chromosome inactivation. It has been unknown whether RBMXL2 provides a direct replacement for RBMX in meiosis, or whether RBMXL2 evolved to deal with the transcriptionally permissive environment of meiosis. Here we find that RBMX primarily operates as a splicing repressor in somatic cells, and specifically regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. These similarities in overall function suggested that RBMXL2 might replace the function of RBMX during meiosis. To test this prediction we carried out inducible expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3