Chemogenetics defines a short-chain fatty acid receptor gut–brain axis

Author:

Barki Natasja1,Bolognini Daniele1,Börjesson Ulf2,Jenkins Laura1,Riddell John3,Hughes David I3ORCID,Ulven Trond4ORCID,Hudson Brian D1,Ulven Elisabeth Rexen4,Dekker Niek2,Tobin Andrew B1ORCID,Milligan Graeme1ORCID

Affiliation:

1. Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow

2. Discovery Sciences, Biopharmaceutical R&D, AstraZeneca

3. Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow

4. Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken

Abstract

Volatile small molecules, including the short-chain fatty acids (SCFAs), acetate and propionate, released by the gut microbiota from the catabolism of nondigestible starches, can act in a hormone-like fashion via specific G-protein-coupled receptors (GPCRs). The primary GPCR targets for these SCFAs are FFA2 and FFA3. Using transgenic mice in which FFA2 was replaced by an altered form called a Designer Receptor Exclusively Activated by Designer Drugs (FFA2-DREADD), but in which FFA3 is unaltered, and a newly identified FFA2-DREADD agonist 4-methoxy-3-methyl-benzoic acid (MOMBA), we demonstrate how specific functions of FFA2 and FFA3 define a SCFA–gut–brain axis. Activation of both FFA2/3 in the lumen of the gut stimulates spinal cord activity and activation of gut FFA3 directly regulates sensory afferent neuronal firing. Moreover, we demonstrate that FFA2 and FFA3 are both functionally expressed in dorsal root- and nodose ganglia where they signal through different G proteins and mechanisms to regulate cellular calcium levels. We conclude that FFA2 and FFA3, acting at distinct levels, provide an axis by which SCFAs originating from the gut microbiota can regulate central activity.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3