SunNet: A Deep Learning Approach to Detect Sunflower Disease

Author:

Sathi Taslima Akter1,Hasan Md Abid1,Alam Mohammad Jahangir1

Affiliation:

1. Daffodil International University,Dept.of CSE,Dhaka,Bangladesh

Publisher

IEEE

Reference28 articles.

1. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

2. Automatic Segmentation and Classification System for Foliar Diseases in Sunflower

3. Grapes leaf disease detection using convolutional neural network;ghosh;International Journal of Modern Agri-culture,2020

4. Deep Learning for Tomato Diseases: Classification and Symptoms Visualization

5. Automation of leaf disease prediction framework based on machine learning and deep learning in different crop species;zabeeulla;Algebraic Statistics,2022

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoding Sunflower Downy Mildew: Leveraging Hybrid Deep Learning for Scale Severity Analysis;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

2. Enhancing Sunflower Disease Identification with CNN-SVM Integration;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

3. Sunflower Disease Identification using Deep Learning: A data-driven approach;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

4. TeenyNet: a novel lightweight attention model for sunflower disease detection;Measurement Science and Technology;2023-12-08

5. Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study;Agriculture;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3