DSTED: A Denoising Spatial–Temporal Encoder–Decoder Framework for Multistep Prediction of Burn-Through Point in Sintering Process
Author:
Affiliation:
1. State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/41/9768205/09720102.pdf?arnumber=9720102
Reference32 articles.
1. Hierarchical Intelligent Control System and Its Application to the Sintering Process
2. Neural machine translation by jointly learning to align and translate;bahdanau;Proc 3rd Int Conf Learn Representations Conf Track Proc,2015
3. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
4. Power System Dynamic Model Reduction Based on Extended Krylov Subspace Method
5. BTP prediction of sintering process by using multiple models
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Time Series Anomaly Detection via Rectangular Information Granulation for Sintering Process;IEEE Transactions on Fuzzy Systems;2024-08
2. Prediction model of burn-through point with data correction based on feature matching of cross-section frame at discharge end;Journal of Process Control;2024-08
3. A Hierarchical Hybrid Learning Framework for Multi-Agent Trajectory Prediction;IEEE Transactions on Intelligent Transportation Systems;2024-08
4. An adaptive control system based on spatial–temporal graph convolutional and disentangled baseline-volatility prediction of bellows temperature for iron ore sintering process;Journal of Process Control;2024-08
5. Deep learning based self-adaptive modeling of multimode continuous manufacturing processes and its application to rotary drying process;Journal of Intelligent Manufacturing;2024-06-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3