DRL-FORCH: A Scalable Deep Reinforcement Learning-based Fog Computing Orchestrator

Author:

Cicco Nicola Di1,Pittalà Gaetano Francesco2,Davoli Gianluca2,Borsatti Davide2,Cerroni Walter2,Raffaelli Carla2,Tornatore Massimo1

Affiliation:

1. Politecnico di Milano,Department of Electronics, Information, and Bioengineering (DEIB),Italy

2. University of Bologna,Department of Electrical, Electronic, and Information Engineering,Italy

Publisher

IEEE

Reference32 articles.

1. Joint optimization of caching, computing, and radio resources for fog-enabled iot using natural actor-critic deep reinforcement learning;wei;IEEE IoT Journal,2018

2. QoS-aware Task Scheduling based on Reinforcement Learning for the Cloud-Fog Continuum

3. Dynamic Many-to-Many Task Offloading in Vehicular Fog Computing: A Multi-Agent DRL Approach

4. Traffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial Applications

5. Cleanrl: High-quality single-file implementations of deep reinforcement learning algorithms;huang;Journal of Machine Learning Research,2022

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel reinforcement learning-based hybrid intrusion detection system on fog-to-cloud computing;The Journal of Supercomputing;2024-08-20

2. Towards Optimal Load Balancing in Multi-Zone Kubernetes Clusters via Reinforcement Learning;2024 33rd International Conference on Computer Communications and Networks (ICCCN);2024-07-29

3. Leveraging Data Plane Programmability to enhance service orchestration at the edge: A focus on industrial security;Computer Networks;2024-06

4. Efficient Microservice Deployment in Kubernetes Multi-Clusters through Reinforcement Learning;NOMS 2024-2024 IEEE Network Operations and Management Symposium;2024-05-06

5. Deep Reinforcement Learning for Network Slice Placement and the DeepNetSlice Toolkit;2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN);2024-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3