Toward Optimally Efficient Search With Deep Learning for Large-Scale MIMO Systems

Author:

He Le1ORCID,He Ke1ORCID,Fan Lisheng1ORCID,Lei Xianfu2ORCID,Nallanathan Arumugam3ORCID,Karagiannidis George K.4ORCID

Affiliation:

1. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China

2. School of Information Science and Technology, Institute of Mobile Communications, Southwest Jiaotong University, Chengdu, China

3. School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K

4. Wireless Communications and Information Processing Group (WCIP), Aristotle University of Thessaloniki, Thessaloniki, Greece

Funder

NSFC

Natural Science Foundation of Guangdong Province

research program of Guangzhou University

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

open research fund of National Mobile Communications Research Laboratory, Southeast University

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Community Detection On Multi-layer Graph using Intra-layer and Inter-layer Linkage Graphs (CDMIILG);Expert Systems with Applications;2024-03

2. Smart Control Solution for Single-Stage Solar PV Systems;European Journal of Electrical Engineering and Computer Science;2023-11-20

3. A modified deep learning based MIMO communication for integrated sensing, communication and computing systems;Digital Signal Processing;2023-10

4. MADNet: based on multiple attention and dilated convolution for CSI feedback;International Conference on Automation Control, Algorithm, and Intelligent Bionics (ACAIB 2023);2023-08-10

5. Adaptive backstepping controller design for DC/DC buck converter optimised by grey wolf algorithm;IET Energy Systems Integration;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3