Privacy-Preserving Data Analysis without Trusted Third Party

Author:

Miyaji Atsuko1,Takahashi Tomoka1,Wang Ping-Lun2,Yamatsuki Tatsuhiro1,Mimoto Tomoaki3

Affiliation:

1. Osaka University,Graduate School of Engineering,Japan

2. Carnegie Mellon University,USA

3. Advanced Telecommunications Research Institute Internationa,Japan

Publisher

IEEE

Reference18 articles.

1. Scikit-learn: Machine learning in Python;pedregosa;Journal of Machine Learning Research,2011

2. Collecting and Analyzing Multidimensional Data with Local Differential Privacy

3. Extremal mechanisms for local differential privacy;kairouz;Advances in neural information processing systems,0

4. Local privacy and statistical minimax rates;duchi;54th Annual Symposium on Foundations of Computer Science,2013

5. Optimal Differentially Private Mechanisms for Randomised Response

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Re-visited Privacy-Preserving Machine Learning;2023 20th Annual International Conference on Privacy, Security and Trust (PST);2023-08-21

2. Balanced Privacy Budget Allocation for Privacy-Preserving Machine Learning;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3