Performance-Aware NILM Model Optimization for Edge Deployment
Author:
Affiliation:
1. School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, Athens, Greece
2. Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, U.K.
Funder
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Networks and Communications,Renewable Energy, Sustainability and the Environment
Link
http://xplorestaging.ieee.org/ielx7/7511293/10224556/10042478.pdf?arnumber=10042478
Reference58 articles.
1. EdgeNILM
2. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five U.K. homes;kelly;Data Science Journal,2015
3. Lightweight Non-Intrusive Load Monitoring Employing Pruned Sequence-to-Point Learning
4. Regularized LSTM Based Deep Learning Model: First Step towards Real-Time Non-Intrusive Load Monitoring
5. Non-Intrusive Load Disaggregation Using Graph Signal Processing
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Feature Engineering‐Based NILM Framework for Appliance Recognition Considering Data Class Imbalance;IEEJ Transactions on Electrical and Electronic Engineering;2024-07-18
2. Community-driven Smart EV charging With Multi-Agent Deep Reinforcement Learning;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
3. A Method for Compression and Deployment of Load Monitoring Model;2024 9th International Conference on Electronic Technology and Information Science (ICETIS);2024-05-17
4. NILM-LANN: A Lightweight Attention-based Neural Network in Non-Intrusive Load Monitoring;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08
5. A Pre-Training Pruning Strategy for Enabling Lightweight Non-Intrusive Load Monitoring On Edge Devices;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3