Optimized Gaussian-Process-Based Probabilistic Latent Variable Modeling Framework for Distributed Nonlinear Process Monitoring
Author:
Affiliation:
1. Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
Funder
National Natural Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
Shanghai Rising-Star Program
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering,Software
Link
http://xplorestaging.ieee.org/ielx7/6221021/10102641/09976064.pdf?arnumber=9976064
Reference40 articles.
1. Performance-Driven Distributed PCA Process Monitoring Based on Fault-Relevant Variable Selection and Bayesian Inference
2. Genetic Algorithms
3. Dynamic Process Monitoring Based on Variational Bayesian Canonical Variate Analysis
4. Gaussian processes in machine learning;rasmussen;Proc Summer School Mach Learn,2003
5. Hybrid fault characteristics decomposition based probabilistic distributed fault diagnosis for large-scale industrial processes
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Distributed process monitoring based on Kantorovich distance-multiblock variational autoencoder and Bayesian inference;Chinese Journal of Chemical Engineering;2024-09
2. Learnable faster kernel-PCA for nonlinear fault detection: Deep autoencoder-based realization;Journal of Industrial Information Integration;2024-07
3. A novel process monitoring framework combined temporal feedback autoencoder and multilevel correlation analysis for large-scale industrial processes;Measurement;2024-06
4. A quality‐related distributed process monitoring framework for large‐scale manufacturing processes with multirate sampling measurements;International Journal of Adaptive Control and Signal Processing;2024-05-24
5. Variable-Wise Stacked Temporal Autoencoder for Intelligent Fault Diagnosis of Industrial Systems;IEEE Transactions on Industrial Informatics;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3