Automatic Dense Tissue Segmentation in Digital Mammography Images Based on Fully Convolutional Network and Intensity-Based Clustering

Author:

Benitez Carlos S.1,Pertuz Said1,Arponen Otso2,Laaperi Anna-Leena2,Rinta-Kiikka Irina2

Affiliation:

1. Universidad Industrial de Santander,School of Electrical, Electronics and Telecommunications Engineering,Bucaramanga,Colombia

2. Tampere University Hospital,Department of Radiology,Tampere,Finland

Publisher

IEEE

Reference18 articles.

1. A deep learning method for volumetric breast density estimation from processed full field digital mammograms;vanegas;Progress in Biomedical Optics and Imaging - Proceedings of SPIE,2019

2. A novel deep learning-based approach to high accuracy breast density estimation in digital mammography;ahn;Progress in Biomedical Optics and Imaging - Proceedings of SPIE,2017

3. Automated mammographic breast density estimation using a fully convolutional network

4. Open Framework for Mammography-based Breast Cancer Risk Assessment

5. U-net: Convolutional networks for biomedical image segmentation;ronneberger;LNCS,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3