Fast Topology Optimization for PM Motors Using Variational Autoencoder and Neural Networks With Dropout

Author:

Sato Hayaho1ORCID,Igarashi Hajime1ORCID

Affiliation:

1. Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan

Funder

Japan Science and Technology Agency (JST) Support for Pioneering Research Initiated by the Next Generation

Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Doctoral Program for Data-Related InnoVation Expert Hokkaido University (D-DRIVE-HU) Program

Japan Society for the Promotion of Science

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Reference10 articles.

1. Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization

2. Auto-encoding variational Bayes;kingma;Proc ICLR,2014

3. A fast and elitist multiobjective genetic algorithm: NSGA-II

4. Variational Autoencoder-Based Metamodeling for Multi-Objective Topology Optimization of Electrical Machines

5. Automatic design system with generative adversarial network and convolutional neural network for optimization design of interior permanent magnet synchronous motor;shimizu;IEEE Trans Energy Convers,2022

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topology Optimization-Based Design of Magnet System in Unilateral NMR Logging Sensor Considering Coil Efficiency;IEEE Sensors Journal;2024-08-01

2. Parameter and Topology Optimization Method for IPM Motors using Multimodal Neural Network;2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC);2024-06-02

3. Bibliography;Topology Optimization and AI-based Design of Power Electronic and Electrical Devices;2024

4. Optimal design based on deep learning;Topology Optimization and AI-based Design of Power Electronic and Electrical Devices;2024

5. Review: Trends in AI Applications and Future Prospects;The Journal of The Institute of Electrical Engineers of Japan;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3